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Abstract
         Sedimentation tanks are designed for removal of floating solids in water flowing through the water 
treatment plants. These tanks are one of the most important parts of water treatment plants and their 
performance directly affects the functionality of these systems. Flow pattern has an important role in the design 
and performance improvement of sedimentation tanks. In this work, the neural network model is used to study 
the particle-laden flow in a rectangular sedimentation tank which used the Kaolin as solid particles. The neural 
network simulation has been designed to simulate and predict the Shear stress coefficient at the bottom of tank 
for various inlet concentrations and maximum streamwise velocity along the channel. The system was trained 
on the available data of the two cases. Therefore, we designed the system for finding the best network that has 
the ability to have the best test and prediction. The proposed system shows an excellent agreement with that of 
an experimental data in these cases.

Keywords: Neural networks, Shear stress, Maximum streamwise velocity, Rectangular sedimentation tanks, 
Particle-laden flows.
1. Introduction

       Solids removal is probably the main process in water purification method in filtration plants. The most
significant phase of this process is the separation of sludge and suspended particles from water by means of
gravity. In these basins, the turbid water flows into the basin at one end and the cleaner water is taken out at the 
other end by decanting. Obviously, the water must flow in the tank long enough for appropriate particles
deposition. The performance of these sedimentation tanks directly affects the filtration basin’s efficiency.
Sedimentation tanks are divided into two main categories. The primary settling tanks have a low influent 
concentration and the flow field in them is not influenced much by concentration field due to the negligible 
buoyancy effects. The secondary or final settling tanks have a higher influent concentration and they are usually 
placed after the primary and activation tanks Tamayol et al.[1]. So they usually contain activated sludge and 
hence, the size of particles would grow and flow field is influenced by concentration distribution. Generally, the 
sedimentation tanks are characterized by several hydrodynamic phenomena, such as density waterfalls, bottom 
current and surface return currents, and are also sensitive to temperature fluctuations and wind effects. Various 
studies have been conducted to find the effects of particles on the flow and hydraulics of settling tanks. Imam 
and McCorquodale [2]solved flow equations with a constant turbulent eddy diffusivity assumption. Celik and 
Rodi [3] and Stamou and Rodi [4] used k-ε turbulence model to predict the flow field in settling tanks. Kerbs 
[5]developed one and two dimensional models for clarifier modeling. He observed that worse sludge quality 
causes stronger density current and thus increases the tendency for short circuiting between the inlet and the 
outlet. Zhou et al.[6] applied a 3-dimensional fully mass conservative clarifier model, based on modern 
computational fluid dynamics theory. They observed that the upward buoyant flow occurs in the tank with deep 
sludge blanket and a short circuiting flow appears near the water surface and flow regime is strongly affected by
the sludge blanket in the tank. Mazzolani et al.[7] developed numerical models for the prediction of turbulent 
flow and suspended solid distribution in the sedimentation tank. They found that increasing the concentration in 
region between discrete settling and hindered settling, results in an increase in settling velocities of the faster 
particles. In addition, the application of the three distinct settling models in the numerical analysis of the 
transport in a rectangular sedimentation tank, yields highly different predictions of solid distribution and 
removal rate. On the other hand, the main features of the hydrodynamic field are qualitatively similar. Tamayol 
and Firoozabadi [8] studied the effects of different turbulent models on the flow field. Tamayol et al.[9] also 
studied the hydrodynamics of secondary settling tanks while using baffles for increasing their performance. 
They found that it is required to calculate the concentration profiles in the tank, as well as the velocity profiles. 
Also their results showed that both Reynolds and Froude numbers are important in determination of the degree 
of importance of buoyancy forces in sedimentation tanks. In tanks with low buoyancy forces, the problem is due
to short circuiting between the inlet and outlet, while in the tanks which are highly stratified, the problematic
phenomenon is bottom density currents. The design of tanks with high deposition rate and hydraulic efficiency 
requires complete investigation of the effect of particles on the flow hydrodynamics. In addition, the 
investigation of the physics of sedimentation and its effects on the hydrodynamics of sedimentation tanks are 
rare. Asgharzadeh et al.[10] studied the effect of particles on hydrodynamics of flow field in secondary
sedimentation tanks experimentaly and numerically. 



  In this work,  we introduce the artificial neural network (ANN) for modelling the Shear stress coefficient at 
the bottom of tank for various inlet concentrations and Maximum streamwise velocity along the channel using 
the data obtained from Asgharzadeh et al.[10].
Neural networks are widely used for solving many problems in most science problems of linear and non-linear 
cases [11-20]. Neural network algorithms are always iterative, designed to step by step minimise (targeted 
minimal error) the difference between the actual output vector of the network and the desired output vector [21-
23]. The data obtained by [10] is chosen to be carried out using the neural networks .
       The present work offers neural network to simulate and predict the unknown data of the shear stress 
coefficient and maximum streamwise velocity along the channel as a function of distance of at the bottom of 
tank at various inlet concentrations. The rest of paper is organized as follows; Sec. 2 describes the artificial 
neural network . Section 3 presents the proposed system. Section 4 shows the obtained results. Finally, Sec. 5 
concludes the work.

2. Artificial Neural Network
          Bourquin et al. [24,25] and Agatonovic-Kustrin and Beresford[26] described the basic theories of ANN 
modeling. An ANN is a biologically inspired computational model formed from several of single units, artificial 
neurons, connected with coefficients (weights) which constitute the neural structure. They are also known as 
processing elements (PE) as they process information. Each PE has weighted inputs, transfer function and one 
output. PE is essentially an equation which balances inputs and outputs. There are many types of neural 
networks designed by now and new ones are invented every week but all can be described by the transfer 
functions of their neurons, by the training or learning algorithm (rule), and by the connection formula. A single-
layer neuron is not able to learn and generalize the complex problems. The multilayer perceptron (MLP) 
overcomes the limitation of the single-layer perceptron by the addition of one or more hidden layer(s)Fig.(1). 
The MLP has been proven to be a universal approximator Cybenko [27]. In Fig. (1), a feedforward multilayer 
perceptron network was presented. The arriving signals, called inputs, multiplied by the connection weights 
(adjusted) are first summed (combined) and then passed through a transfer function to produce the output for 
that neuron. The neuron transfer function, f, is typically step or sigmoid function that produces a scalar
output(O) as follows

        O f W I bi i
i

  ( )                                                                    ( 1 )

where Ii , Wi and b are i th input, i th weight and  bias, respectively.
The activation (transfer) function acts on the weighted sum of the neuron’s inputs and the most commonly used 
transfer function is the sigmoid (logistic) function. The way that the neurons are connected to each other has a 
significant impact on the operation of the ANN (connection formula). There are two main connection formulas 
(types): feedback (recurrent) and feedforward connection. Feedback is one type of connection where the  output 
of one  layer routes   back to  the input of a previous layer, or to same layer. Feedforward does not have a 
connection back from the output to the   input neurons. There are many different learning rules (algorithms) but 
the most often used is the Delta-rule or backpropagation (BP) rule.

Fig.(1). Schematic representation of a multilayer perceptron feedforward network 
         consisting of two inputs, one hidden layer with four neurons and 14 outputs.

         A neural network is trained to map a set of input data by iterative adjustment of the weights. Information 
from inputs is fed forward through the network to optimize the weights between neurons. Optimization of the 
weights is made by backward propagation of the error during training or learning phase. The ANN reads the 
input and output values in the training data set and changes the value of the weighted links to reduce the 
difference between the predicted and target (observed) values. The error in prediction is minimized across many 
training cycles (iteration or epoch) until network reaches specified level of accuracy. A complete round of 



forward–backward passes and weight adjustments using all input–output pairs in the data set is called an epoch 
or iteration. 

3. Modeling Shear Stress Coefficient and Maximum Streamwise Velocity Using ANN

          Shear stress coefficient Cd and maximum streamwise velocity Umax can be simulated and predicted at 
different inputs using ANN. we choose to internally model the problem with two individual neural networks 
trained separately using experimental data. The first ANN was configured to have distance at bottom tank X/Lo

and Cin (0,400 and 800) as inputs while the output is  Shear stress coefficient Cd  . The second ANN was 
configured to have distance at bottom tank  X/Lo and Cin (0,400 and 800) as inputs while the output is maximum 
streamwise velocity Umax . Fig.(2) represent a block diagram of the two ANN based modeling.

         

Fig.(2): Block diagram of the two ANN based modeling.
The performance of the previous two models is examined by using the mean square error 

(MSE) .The proposed ANN was trained using the Levenberg–Marquardt optimization technique. This
optimization technique is more powerful than the conventional gradient descent techniques. The Levenberg–
Marquardt updates the net- work weights using the following rule: 

W=(JTJ+I)-1JTe   (2)
where J is the Jacobian matrix of derivatives of each error with respect to each weight; JT is the transposed
matrix of J; I is the identity matrix that has the same dimensions as those of JTJ;  is a scalar changed adaptively
by the algorithm and e is an error vector. W is a measure for the rate of learning of the network i.e. when W 
tends to zero this means that the network has been learnt (ready to predict the unseen values).Then the
adjustment for the weights is done by Eq. (2) to reduce the error value.

4 Results 
         The proposed ANN models were applied to simulate the shear stress coefficient Cd (referred to as model1) 
and maximum streamwise velocity Umax (model 2). By employing the above mentioned proposed models with 
different values of the ANN parameters we have obtained different numbers of hidden neurons for the ANN 
models. The results obtained by the two models are discussed in the following: The first ANN having three
hidden layers of 67 , 86 and 94 neurons (model1) and second network having 90 , 77 and 80 neurons(model2) 
respectively with one neuron in the output layer. Network performance was evaluated by plotting the ANN 
model output against the experimental data and analyzing the percentage error between the simulation results 
and the experimental data Fig. (3). In the training process, 196 and 657 epochs was found to be sufficient, Fig. 

(3), with respect to the minimum mean sum square error (MSE) of 2.3939×10
-12

and  9.8191×10
-13

respectively. 
For all networks, the function which describes the nonlinear relationship is given in appendix.

(a)                                                                                (b)

    

Fig. 3: Performance using ANN model, where epochs are the number of training 
(a) Shear stress coefficient Cd

(b) Maximum streamwise velocity Umax
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The above mentioned details of the proposed ANN model (model1) are carried out and simulated two the 
experimental data of the distance at bottom tank  X/Lo and Shear stress coefficient Cd using the obtained function 
which is given in appendix. The proposed Cd is trained using ANN model on three cases of inlet concentration
Cin. The values of these cases are 0, 400 and 800 Fig.(4) . After the training , the obtained system is predicted 
the behavior of inlet concentration Cin=1000 Fig.(4). It is found that as shown in Fig. (4), the obtained results 
(simulated and predicted) are provided to demonstrate good agreement with the experimental data[10] .

Fig. 4. ANN simulation and prediction of shear stress coefficient.

Also, ANNs are chosen to be applied on the maximum streamwise velocity Umax (model2) at different 
values of inlet concentration Cin. The training values inlet concentration Cin are 0, 400 and 800 as shown in 
Fig.(5). The predicted value of inlet concentration Cin = 1000 is in Fig(5). The simulation and predicted results 
from the obtained function which is given in appendix are best fitting with the experimental data. It is noted 
from Fig(4) and Fig(5) that, the proposed ANN model shows excellent results matched well the experimental 
data.



    
Fig. 5. ANN simulation and prediction of maximum streamwise velocity Umax

5.Conclusion

   In this work, a method was proposed to model the Shear stress coefficient Cd at the bottom of tank for various 
inlet concentrations and maximum streamwise velocity along the channel Umax using ANN. For training and 
testing the network, several numerical cases with combinations of input variables and output data are generated. 
The validity of the applied predicted methods was investigated in several cases to ensure the effectiveness to 
establish the results with less permissible error. It can be concluded by analyzing the results that the artificial 
neural network can predict the shear stress coefficient Cd at the bottom of tank for various inlet concentrations 
and maximum streamwise velocity along the channel Umax accurately with minimum relative error. The trained 
ANN network shows excellent results matched with the experimental data in the two cases of the shear stress 
coefficient Cd and maximum streamwise velocity Umax. The designed ANN introduce a powerful model and 
shows a good match to the experimental data. Then, the capability of the ANN techniques to simulate and 
predict the experimental data with almost exact accuracy recommends the ANN to dominate the modelling 
techniques in fluid mechanics.
Appendix 
The equation which  describe  shear stress coefficient  and maximum streamwise velocity is given by:
Cd  and Umax =Pureline [net. LW{4,3} logsig(net. LW{3,2} logsig(net.LW{2,1} logsig(net. IW{1,1} A +net. 
b{1})+net. b{2})+net. b{3})+net. b{4}],
Where

A =X/Lo is the input
net. IW{1,1}: linked weights between the input layer and first hidden layer.
net. LW{2,1}: linked weights between the first hidden layer and the second hidden layer.
net. LW{3,2}: linked weights between the second hidden layer and third layer.
net. LW{4,3}: linked weights between the third hidden layer and output layer.
net . b{1}: is the bias of the first hidden layer.
net . b{2}: is the bias of the second  hidden layer.
net . b{3}: is the bias of the output  layer.
net. b{4}: the bias of the output layer.
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